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REFLECTION AND INTERFERENCE OF ELECTROMAGNETIC WAVES

IN INHOMOGENEOUS MEDIA

F. E. Geiger* and H. L. Kyle
Laboratory for Meteorology and Earth Sciences

NASA-Goddard Space Flight Center
Greenbelt, Maryland 20771

ABSTRACT

Solutions were obtained of the wave equation for a plane horizontally polarized

electro-magnetic wave incident on a semi infinite two dimensional inhomogeneous

medium. The complex dielectric constant of the medium was assumed to be

e (z) = e' (0) (1 + a z) - i E" (0) (1 + b z), where a, and b are positive constants.

Two problems were considered: an inhomogeneous half space, and an inho-

mogeneous layer of arbitrary thickness for 0 < z < z 1, contiguous to an inho-

mogeneous half space for z1 < z < o. The dielectric constant E(z) is dicon-

tinuous at z = 0 but continuous at z = z 1, the gradient, grad E (z), is discontinuous

at z = 0, z 1. Solutions of the wave equation were obtained in terms of Hankel

functions with complex arguments. Numerical calculations were made of the

reflection coefficient R at the interface of the homogeneous medium, z = 0, as

a function of a, b, ' (0), E" (0), by programming the Hankel functions and the

expressions for R on a 360/91 computer. The startling results are that the

reflection coefficient for a complex dielectric constant with gradient, E'(0) a -

i E"(0) b, can be less than that of the same medium with zero gradient, i.e.

E (z) = E'(0) - i E"(0). The physical explanation of this behavior is given in

terms of the interference of the coherent scattering reflections which take place

thruout the inhomogeneous medium.

*Present address: 1301 Delaware Avenue, Washington, D. C. 20024.
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REFLECTION AND INTERFERENCE OF ELECTROMAGNETIC WAVES

IN INHOMOGENEOUS MEDIA

I. INTRODUCTION

The problem of a plane electromagnetic wave incident on a semi infinite inho-

mogeneous medium has a long and interesting history. The problem is of two

kinds, the purely analytical one of solving the wave equation with a variable

coefficient describing the inhomogeneity of the medium and the physical inter-

pretation of the results.

Exact solutions have been obtained in a small number of cases, and various

approximations which place a limit on the variation of the dielectric constant

over the wavelength. The physical interpretation of the results would appear to

be fairly clear, early doubts as to the presence of reflections in the inhomogeneous

medium were dispelled by Wallot 1, but primarily by Bremmer 2. Similarly "re-

flections" at discontinuities of gradients, and the question of unique resolution

of the wave field into incident and reflected waves have been clarified3 . But the

full implications of the effect of internal reflections in the inhomogeneous

medium seem not to have been appreciated.

Microwave measurements of reflectivities of soils, and soils with varying

amounts of moisture as a function of depth, from satellite and aircraft platforms

made it necessary to get both insight into the physical nature of the problem,

and actual figures of reflection coefficients. We therefore investigated the

solution of the wave equation for semi infinite and layered media with linearly

increasing dielectric constant in some detail. The solution of the problem for

a real dielectric constant was obtained by Gans 4 , and Wallot 1.

Wallot obtained a closed solution in terms of Hankel functions for an inhomoge-

neous transition layer between two homogeneous media. The real dielectric

constant is assumed to increase continuously from the free space value E 0 to

the value E of the second homogeneous medium. As the transition layer is

reduced to zero thickness the Fresnel reflection coefficient is found to increase

monotonically from zero to the limiting value corresponding to the Fresnel co-

efficient between two homogeneous media of dielectric constants E 0 and ,

respectively. If we suppose that the transition layer is replaced by a single

semi infinite inhomogeneous layer, Wallot's results clearly indicate that the

reflection coefficient at the interface increases monotonically to the limiting

value of 1 as the gradient approaches infinity.

In our formulation of the problem we shall use the mathematical formalism of

Brekhovskikh5 as the most suitable for our purposes.
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Brekhovskikh calculates the reflection coefficient for a layered, and semi
infinite inhomogeneous medium. Like Wallot, he uses a real dielectric constant
and continuity of E (z) at the interface between homogeneous and inhomogeneous
layer. In our calculation, we will change the physical characteristics of the
inhomogeneous layer in three important respects, a) the dielectric constant is
discontinuous at the first interface between homogeneous and inhomogeneous
layer or inhomogeneous semi infinite medium, b) the dielectric constant is
complex, c) the real and imaginary parts of the dielectric constant vary linearly
with z, but independently of each other. As shown above, Wallots results indi-
cate then that the reflection coefficient for an inhomogeneous half space with a
complex dielectric constant will only differ from those with a real constant in
detail but not in essentials. In other words we expect the absolute reflection
coefficient to increase monotonically to the limiting value 1 as grad E (z) in-
creases without limit.

In fact the reflection coefficient behaves in a quite unexpected fashion depending
on the individual gradients of E' (z) and E"(z). The reflection coefficient is no
longer a monotonically increasing function of e'(z) and E (z)*. We will show
that the behavior of the reflection coefficient can be explained by interference
phenomena in the inhomogeneous medium, and that Wallot's conclusions apply
only to a special case.

Early investigators were handicapped in the interpretation of their results by
the unwieldiness of their results for the reflection coefficient. Hankel functions
had only been tabulated for integral and half integral orders. Consequently only
a small number of calculations were made under special limiting conditions,
i.e. very large or very small arguments of the Hankel functions. We have made
machine calculations of Hankel functions for complex arguments of order 1/3
and 2/3, and programmed our reflection coefficient calculations on an IBM 360/91
computer.

II. THE WAVE EQUATION AND WAVE FIELDS
FOR AN INHOMOGENEOUS MEDIUM

Consider a plane wave incident from free space on a semi infinite inhomoge-
neous medium whose dielectric properties are a function of z only. (See Fig-
ure 1.) The wave is polarized in the y-direction, the electric fields in the

*We were not able to prove analytically the monotonic increase of the absolute value of the
Fresnel reflection coefficient with increasing e' and E" of the dielectric constant E'- i E", but
computer runs of IR I as a function of E' and d' tend to show this.
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x- and z-directions are zero, i.e. the incident field is horizontally polarized.

The inhomogeneous halfspace may be separated by an inhomogeneous transition

layer between 0 < z < z 1 from free space. Both inhomogeneous media have a

dielectric constant which is a linear complex function of z. Designating free

space, the inhomogeneous layer, and the inhomogeneous half space as media I,

II, and III, respectively, e (z) for medium II will be,*

E(Z) = E'(Z) - i E"(z) = E'(0) (1 + a z) - i E"(0) (1 + bz)

0 < z < z, a > 0, b > 0,

and in medium III,

E(z) = E'(0) ((1 + azl) + c(z - z) ) - i '(0) ((1 + bz1 ) + d(z - zl)) ,

Z < z < ,, c > 0 , d > 0.

It will be seen that e (z) is a continuous function, but the gradient, YE (z), is

discontinuous at z = z 1.

The electric field Ey satisfies the general wave equations

D2 E /- z 2 + E (k 2 (z) - sin 2 0 ) 0= (1)

where,

k 2 (z) = w2
0o (z) 0 < z < oo, media II and III, (2)

and, 90, angle of incidence of plane wave.

*MKS units and a positive time factor exp (i c t) are used thruout. See References 6 and 7.
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In medium I, k 2 (z) reduces to the free space wave number W2 40 E., where,

W = 27T v,

the circular frequency, sec-,

CIo = 1. 257 x 10- 6 Hm- 1 ,

the permeability of free space,

Go = 8.854 x 10-12 Fm-1,

the dielectric constant of free space.

The solution of Eq. (1) in medium I is given by the incident and reflected wave-
field,

E = exp (-ik o cos 0o z) + R exp (ik o coS 6o Z), (3)

where, R is the reflection coefficient at z = 0. In medium II, we have the wave
equation,

Y
2 E /az 2 + k2 [E'(O)/(1 + az)/E o - iE"(0) (1 + bz)/EO - sin2 o] E 0

(4)
where,

k0 20 0

the free space wave number

and,
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k 2 (z) = co2 Iz0 (E'(0) (1 + az) - i E"(O) (1 + b z)), (5)

E (0) = ' (0) - iE"(0),

the dielectric constant of the inhomogeneous medium at the interface z = 0.

We introduce the variable,

e = E'(0) (1 + az)/E o - i E"(0) (1 + bz)/Eo - sin 2 00o,  (6)

and rewrite Eq. (4),

3 2 E /3 2 + (ko/ (aE'(0)/ o - ib e"(O)/e o )) E = 0. (7)

We make a second transformation,

w = 2/3 - b 3/2, (8)
ae'(0)/Eo - ib 6"(0)/0)

writing the wave equation in terms of the new variable w,

S 2 E /3w 2 + 1/3 W - I Ey/Dw + Ey = 0. (9)

The solution of Eq. (9) can be written most conveniently for our purpose in
terms of Hankel functionss of the first and second kind of order 1/3,

E = Awl/3 H (1) (w) + B W1/ 3 H1 ( 2 )(w), 9  0 < z < z1 . (10)
y 1/31/_) < V0

Similarly we have for medium III,
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2 Ey/z 2 + ko2 [E'(0) ((1 + azl) + c (z - z,)) /Eo

(11)

- iE"(0) ((1 + bzl) + d(z - zl)) /EO - sin2 e] Ey = 0.

Making the transformations as above,

7 = E'(O) ((1 + az,) + c (z - zl)) /e

(12)

- i e"(0) ((1 + bzl) + d (z - zj)) /E 0 - sin 2 80,

v = 2/3 C3/2, (13)
c E'(0)/E o - id E'(0)/ Eo

E = Cv/3 H1/(1) (v) + D v1/3 H/3(2)(v), (14)

where C and D are constants as are A and B in Eq. (10).

IIa. Determination of the Constants A, B, C, D and the Reflection Coefficient R

The electric field Ey must remain finite as z goes to infinity. From Eqs. (12)
and (13) we have,

lim - = 2/3 ko z
3 / 2 (E'(0) C/E 0 - i E"(0) d/Co)

or v - - as z - oo, and v will be in the fourth quadrant,

(- 1/2 7T arg v < 0) for c > 0, d > 0, e' / o > 1, E"/eo > 0;
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hence HI (1)(v) o, and H (2 ) - 0 as v - ., and we must haveo C = 0. And

we have,

E D 1/3 H 1/ ( 2)(v) 1 < z < oo. (15)

The continuity conditions for Ey and - E y/ z a H x at z = z give the following

equations,

Aw1/3 H1/(1)(w) + Bw/3 H 1/3 2)(w) = DV1/3 H1/(2)(v), z = Z1,

(16)

Z 1 = Z V 1  V W 1 = W

z=z 1  z
=
z1 zz 1

dw Awl/3 H-2/ (1)(w) + BwlH-2/(2) (W) dvH 2)

(17)

z z 1,

where we have used the relation,"

d Wl/3 H 1/(1), (2) (1) w/3 H_2/( 1), (). (18)

From Eqs. (6), (8), (12), and (13),

dw d = k 1/2 dv d 1/2 ,  (19)

d dz k0 dT? dz

and

dw dv
dz dz' Z 1 .
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Solving Eqs. (16), and (17) for D,

D A w 1/3 HI3 (1 ) (w) + B w1 /3 H13( 2) (WI)) / (v/3 H1/ 2) (V 1 )) , (20)

we find for A/B from Eq. (16),

( 2 ) () H2/3( 2 )  2/3(2 ) (V1) 2)H 2 ) (v1)

1/3 -2/3 -2/3 (w 1/3
A/B =  (21)

H_2/(1) (W1 ) H/ (2) (v1) - H-2/32) 1) H1/(1) (W1)

The continuity conditions at the interface z = 0 give from Eqs. (3) and (10),

(1 + R) = Aw 1 / 3 H  ( 1 ) (w) + B W1/ 3 H  (2) (w) (22)
3 1/3

z0

and

z=

and

ik(R -1) cos Aw/ 3 H 2/ 1)(w) + Bl/32/3(2)(23)
ik o ( R - 1) cos 8o  dzI (23)

z=0

w-wo

dw / \1/2
dwz ko  (0)/ - i E"(O)/Eo - sin 2 0 o)1/2 (24)

dz

From Eqs. (23) and (24) we easily find for the reflection coefficient at z = 0,

- i cos 0o - E'(0)/ 0 - iE'(O)/ o0 - sin 2 ao) 1/2 G

R (25)
-i cos 0 + (E'(O)/E 0 - i'"(O)/E 0 - sin 2 

0)1/2 G

8



where,

(A/B) H2/(1)(Wo) + H 2/(2)(W)
G =  (26)

(A/B) H,/ ) (wo) + HI/ (2)(w

Equation (25) looks very much like the Fresnel equation for reflection of a plane

wave from a semi infinite medium with dielectric constant E'(0) - i E' (0), with a

factor G (w0 , w , v 1) in the numerator and denominator to account for the in-

homogeneity. In fact we can show that Eq. (25) reduces to the Fresnel equation

if the arguments of the Hankel functions are allowed to go to infinity, i.e. a = b

= c = d - 0, then Iwo0 - -, IwI -j , and Ivi- ". In other words the in-

homogeneity has been removed.

Using the asymptotic expansion of Hankel functions'1 2 for large arguments, we

find,

H 1/(1)(z) = (2/7z) 1 / 2 exp(iz - in5/1 2 ) (1 - i • 5/(72z)), (27)

H 2/1) (z) =  (2/n z) 1 / 2 exp (i z + in/ 12) (1 + i • 7/(72z)), (28)

H/(2) (z) = (2/T z)1/ 2 exp(- i z + in5/12) (1 + i - 5/(72z)), (29)

H_ 2 /( 2 ) (z) = (2/r z) 1/ 2 exp (- i z - in/12) (1 - i • 7 (72z)), (30)

where all arguments of z are assumed to be in the 4th quadrant. After a great

deal of algebraic manipulation we have,

A/B = (1/12) exp (- i 2 w1 + in/3) (1/w - /v + 0 (w2, v12)) (31)

and

- i (1 - i/(6 w)) + (1/12) exp (2i(wo - w,)) (1/w, - 1/v,)

G =  (32)
1 - (i/12) exp (2i(wo - Wl)) (1/w, - 1/v,)

9



In the limit as Iwol, W ll, Iv - ,

lim G = -i,

wo

V1

and Eq. (25) reduces to the Fresnel equation,

cos 80 - (E'(O)/Eo - i E(0)/E o - sin 2 E 1/2
R =  (33)

cos ao + (e'(0)/6o - iE"(0)/E o - sin2 90) 1 / 2

IIb. Limiting Expressions for the Reflection Coefficient

The double layer expression for the reflection coefficient R, Eq. (25), can be
reduced to a single inhomogeneous layer (i.e. inhomogeneous half space) ex-
pression by setting c = a, and d = b, then wo remains unchanged, and w1 = v1 .
Equation (21) reduces to zero and G becomes,

G = H ( 2) (Wo /H1/(2) Wo). (34)

If the first layer, (0 < z < z ), is inhomogeneous, and the half space, (z 1 < z < o),
homogeneous, c = d = 0, v1 - o, and we have the following expressions for A/B
and G,

- iH 1 /3 ( 2 )(w 1 ) - H2/ 3( 2 ) (w 1)
A/B =  (35)

H-2/ ( 1) ( 1 ) + i H (2) (W1 )

(A/B) H2/(1) Wo) - H 2 / 2 ) (w0 )

G =  (36)
(A/B) H1 /( 1 ) (wo) - HI/(2) (W)

10



No useful limiting expression is found if the first layer is homogeneous and the
second an inhomogeneous halfspace. In this case a = b = 0, wo and w, approa,
infinity. This problem has to be solved by considering the specific boundary
value problem from the beginning, and solving the equations for the reflection
coefficient.

IIc. Machine Calculation of the Reflection Coefficient

The expression for the reflection for an inhomogeneous medium is so complex
that no conclusions can be drawn about the general behavior of the coefficient.
Equations (25), (26), and (21) were therefore programmed for an IBM 360 com-
puter. The program included also direct calculation of the Hankel functions of
the first and second kind of orders 1/3 and 2/3. Tabulations of these functions
are not available except for modified Hankel functions with complex arguments
and absolute values I z < 6. This is much too restrictive a range for the prob.
lem under consideration, and for a general exploration of the behavior of R.
We therefore wrote our own straightforward computer program using the fol-
lowing equations to calculate the Hankel functions for an arbitrary complex
argument. 13 For Iz < 7.5 we used,

H') (z) = i csc (v) [exp (- iTv) J, (z) - J, (z)] (37

H( 2 )(z) = -i csc (un) [exp (iv) J, (z) -J_,(z), (38

where the Bessel functions were calculated using the ascending series,

J, (z) (- 1/4 2) (39

m m!(v +m+ 1)

The series was summed in double precision arithmetic to yield J (z) to 6 1/2
significant figures. For I z I > 7.5 we used terms through L4 in the asymptotic
expansion of the Hankel functions:

H 1 ) = 2/ (7 z) [P (v, z) + iQ(v, z)] exp (iX) (40

11



H(2)(z) = /2/(7 z) [P (v, z) - iQ (v, z)] exp (- iX), (41)

where,
X = z - (1/2v + 1/4) T, = 4v 2

P (v, z) =  (-)k (, 2k)

k=O (2z)2k

Q (V, z) (- 1) k (v, 2k + 1)

k=O (2z)2k+1

and,

v,-k) 12) (- 32) .... (L- (2k- 1)2)

2 2k k !

(v, 0) 1.

This prescription yields Hankel functions accurate to six significant figures
for Iz I < 7.5 or I z I > 10, and five significant figures for 7.5 < I z < 10.
Greater accuracy can be obtained by retaining more terms in the expansions.

III. RESULTS OF COMPUTER CALCULATION
OF THE REFLECTION COEFFICIENT

Machine calculations were made of the reflection coefficient for single and
double layer inhomogeneous media at several microwave frequencies. The
calculations on the single layer semi infinite inhomogeneous medium lend them-
selves more readily to interpretation and understanding of the underlying
physical processes, and will be discussed first.

Figures 2, 3, and 4 show a plot of the reflection coefficient for an inhomoge-
neous half space and horizontal polarization. The dielectric constant at the
vacuum-dielectric interface was chosen to correspond to soil with roughly
2% moisture, and alternately with 15% moisture by weight. Moisture content
was assumed to increase as a function of depth (distance from interface) re-
sulting in a hypothetical linear increase of E'(z) and E"(z), or constant gradient
a (z)/3 z = E' (0) a - i E"(0) b. The absolute amplitude reflection coefficient was

12



plotted as a function of the constant b, which controls the gradient of the
imaginary part of the dielectric constant, for various values of the constant a.

Intuitively one expects R I to increase from the value determined by the Fresnel
equation for E = e'(0) - i E'(0) with increasing a and/or b. Although there is an
immediate increase in IRI for a = b > 0, further increase in b results in a
steady decrease of I R I until a minimum is reached. We find the surprising
fact that for a broad range of values of a and b the reflection coefficient at the
interface drops considerably below the value of the Fresnel coefficient of a
semi infinite homogeneous medium with dielectric constant (c (0) - i El (0)) , i.e.
the dielectric constant of the inhomogeneous at the vacuum-dielectric interface.
On the other hand if b = 0, but not necessarily E" (z) the reflection coefficient
increases steadily with increasing a from the aforementioned value of the re-
flection coefficient. This behaviour is shown in Figure 5, and is entirely in
accord with one's physical intuition.

One is forced to conclude, since the absolute value of the Fresnel coefficient is
a monotonically increasing function of E'(z) and E"(z)*, that the drop in the re-
flection coefficient of the inhomogeneous medium is caused by interference.
Bremmer 2 explored the physical interpretation of the wave field in inhomoge-
neous media, and was able to demonstrate the presence of reflected waves at
all points of the inhomogeneous medium. We will try to demonstrate in a sub-
sequent section that the phase relationship of the reflections in the inhomoge-
neous medium is such as to cause interferences and a reduction in the amplitude
of the wave emerging from the inhomogeneous halfspace.

A limited number of calculations were also made for a two-layered inhomogenous
medium at three microwave frequencies, 37.0, 19.35, and 5.0 Gc/sec. The first
inhomogeneous layer is of finite thickness and is followed by a semi infinite in-
homogeneous medium. The dielectric constant is continuous at the interface
between the two inhomogeneous media, but there is a discontinuity in the gradient
of the dielectric constant, i.e. 3 E/3z = e'(0) a - i E"(0)b for 0 < z < z1 , and
- E // z = e'(0) c - i E" (0) d for z < z < ., where z, is the distance from the

free space-dielectric interface to the interface between the inhomogeneous
media.

Figure 6 shows the results obtained for a two layer model for two values of z 1
However the dielectric constant gradients and the dielectric constant E (0) =
E'(0) - i E"(0) at z = 0 were the same in both cases. For comparison we calcu-
lated the reflection coefficient as a function of frequency for a simple semi
infinite inhomogeneous medium whose dielectric constant E (z) is the same as

*See footnote on p. 3.
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that of the first layer of the above composite (two layer) model. There is a

striking difference in the behavior of the reflection coefficient for the three

cases. The single layer reflection coefficient is relatively insensitive to changes

in frequency, the double layer, on the other hand, shows relatively large fluctua-

tions in the coefficient when z 1 is changed from 0.5 x 10 - 2 to 0.25 x 10-2 meter*.

We conclude, therefore, that the discontinuous change in the gradient a E/3 z at

z = z1 gives rise to strong reflections, which emerge at z = 0 and interferes

with the reflection at the air-dielectric interface. A change in z, of 0.25 cm

corresponds very roughly to a quarter wave length for 19 Gc/s and an average

dielectric constant of e = 3.0 x 10- 1 1 . Thus the emergent reflection will have

suffered an approximate phase shift of 7, and will be in phase with the reflection

at the interface. This reasoning assumes that a definite reflected wave can be

assumed at the interface z = z 1. However the wavefield in the first inhomoge-

neous layer cannot be separated into incident and reflected waves so that a re-

flection coefficient at z = z 1 has no meaning and cannot be defined.

IV. INTERFERENCE EFFECTS IN INHOMOGENEOUS MEDIA

The approximate solution of the wave equation (see Eq. (1)) for an inhomogeneous

medium extending from -. to +. with a slowly varying wave number k (z) is the

well known WKB solution1 4 ,

E = (k(z)-1/2 1 exp - ik(z) d + C2 exp (- ik(z) dz), (42)

where C, and C 2 are constants. There are no reflections to this order of

approximation, and the two waves in the positive and negative directions, re-

spectively, are independent of each other.' 5 Bremmer 1 6 has shown that Eq. (42)

represents only the zero order term in a series solution, and higher order

approximations can be interpreted as reflected waves. Thus the zero order

wave

(k(z))-1/2 C1( 0 ) exp -i fzk(z) d Z,

propagating in the positive z-direction from -=, produces a reflection at each

*Suggested by T. Wilheit.
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point in the medium given by

Cf(1) = C1(0) f(z) exp (2i k(z) d .

Conversely, the zero order wave

C2(O) k(z) -1/2 exp ifk(z) dz)

produces a first order reflected wave propagating in the positive z-direction,

etc. It can easily be shown that the zero order waves propagate without reflec-

tion. The power flow calculated from the Poyting vector

S = (Ex H)

for the "upgoing" wave

(k(Z)) exp z- ik(z) dZ)

is a constant, i.e. undiminished by reflections. In order to demonstrate the

presence of interference effects in a semi infinite medium, as apparently

manifested by the drop in the reflection coefficient at the vacuum-dielectric

interface, one would have to show simply the presence of emerging scattering

reflections such as C(1), C 1 2), ... etc. These obviously coherent reflections

are then capable of interference. Their exact phase relationship will be deter-

mined solely by the dielectric constant E (z) of the semi infinite inhomogeneous

medium.

However, for a boundary value problem such as ours it is no longer possible to

demonstrate in a perfectly general way the reflected waves in the inhomogeneou

half space. The WKB solution of the wave equation for a plane wave incident on

a semi infinite inhomogeneous space is,

15



Ey = C1 (k(z)) - 1/ 2 exp i k(z) d, z > 0.

Using Bremmer's approach in the preceding paragraph for an infinite medium
(- < z < +-) and applying it to the semi infinite case (0 < z < .) turns out to
be not very fruitful. It seems impossible to arrive at higher order approxima-
tions to E , which could be identified as secondary, ... etc. waves originating
from reflection losses of a primary, ... etc. wave. A more direct approach
suggested by Bremmer's exact solution of a plane wave reflection from a semi
infinite medium 17 with k (z) a 1/z consists in examining the reflection coefficient
(see Eqs. (25) and (34)) directly.

Using the asymptotic expansion of H1/ 2) and H2/3(2) for w >> 1 of Eqs. (40),
and (41) one finds for G, (see Eq. (34)),

(1 - i a,/w + a 2 /w 02... )
G = H_2/32) Wo) 1 /H1/ (Wo) exp (- iTr/2)

(1 + i b/w - b2/w 0...)

Using the binomial expansion, we have,

G ' exp (- im/2) (1 - (a, + bl)/wo + (a 2 + b2 - alb, - b)/w02 + 0 (w0))

where,

a1 = 7/72

b = 5/72

a 2 = 455/10368

b 2 = 385/10368.

From Eq. (25) we have for the reflection coefficient, for normal incidence,
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I ( ( 0))1/2 (- i (a1 + bl)/Wo + (a 2 + b - alb - b1)/W ...

1 + ((0)) 1 / 2  i (a 1  bl)/wo + etc ... )

where

(Er (0))'/
2  '(0)/6 0 - i E"(0)/E0) 1/2

We can rewrite R by again using the binomial expansion and assuming

r (0))1/2/ (1 + E (0))1/2 (a 1 + bj)/w 0o

and

Er (0)) 1 / 2 / ( (0))1/2 (a 2 + b2 alb - b2) 2 1.

Retaining only second order terms in wo, and after much algebraic manipulation,
we find,

R (0)) 1/ 2( + (0) 1/ 2) 1 + (i/6) 2 E' (0)) 1/2 (1 (0)) /WO

- (1/w02) (0.083)2 (r (0))1/2/ (1- E (0)) + (0.028)2 Er (0) / (1 - E2 (0))) ... ). (43)

The first term in the brackets clearly corresponds to the WKB approximation.

It is simply the reflection coefficient for a homogeneous semi infinite medium

with relative dielectric constant

Er (0) = '(O)/ E0 - i E"(O)/E0

and as shown above there are no contributions to the scattering reflections from
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the inhomogeneous medium in the WKB approximation. One can also prove the
absence of scattering reflections by solving the boundary value problem of the
semi infinite inhomogeneous medium in the WKB approximation*. The result,
as anticipated is simply the reflection coefficient for a homogeneous medium of
dielectric constant Er (0). The second and third terms of Eq. (43) are complex
constants whose magnitude and argument represent the amplitude and phase,
respectively, of the scattering reflections emerging at the interface and propa-
gating in the negative z-direction. In other words the first secondary reflection
due to the primary progressive wave, (see Eq. (42)),

E = C1 (k (z)) - 1/ 2 exp i k(z) dz t (44)

in the inhomogeneous medium is given by,

I - (E (0))1/2 2 (cr (0)) 1 / 2

6 * exp (i ko z). (45)
1 + (Er (0)) 1/ 2  (1 - E r (0)) 6 w 0

These secondary reflections combine destructively or constructively depending
on the phase relative to the primary reflection at the interface due to the WKB
term. See Eq. (43).

We have thus demonstrated the presence of secondary plane wave reflections in
the homogeneous subspace -o < z < 0 and by inference secondary reflections in
the inhomogeneous subspace 0 < z < o.

V. THE RADIATION FIELD IN THE SEMI INFINITE
INHOMOGENEOUS MEDIUM

In the WKB approximation (see Eq. (42)) and the Bremmer solution for an
infinite inhomogeneous medium waves in the positive and negative direction can

*See Appendix.

t It may be shown that the exact solution for E (see Eq. (10)) in terms of H 1/( 2 )(w) reduces to

a first approximation to the WKB solution, Eq. (44). See Reference 18.
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still be identified, although some may be independent of each other as shown in
the preceding section. The exact solution of the wave equation for the specific
case of a linearly increasing dielectric constant in a semi infinite space as
given by Eq. (10),

E B W 1 / 3 H/ ( 2 ) (w), 0 < z < oo,

no longer permits a clear cut distinction between reflected and incident waves,
or even waves travelling in positive and negative directions independently of
each other.

In order to get a more physical picture of the wave field in the semi infinite
space, and in addition the powerflow into the medium the complex Poynting
vector S* was machine calculated from

1 1 1
IRe S*1 = IRe (E x H)I = Re E Hx. ' 9  (46)

From Eq. (10) and from Maxwell's equation for Hx = (ip0 0 )- 1 ' Ey/ z, we find
for normal incidence, 80 = 0,

Hx = (ia )o)-1 B w1 / 3 H-2/3 ( 2 ) (w) ko (1/2). (47)

Then,

Re S* Re (-ici)-' B B Iw1/312 Hl/2)(w)H)) (w) k0 1/2, (48)

where the sign - denotes the complex conjugate.

If the medium is not lossy machine calculations show that Re S* is a constant
for all z > Ot. The discussion of internal reflections throughout the inhomoge-
neous medium of the preceding section would have led one to guess at a constantly

tOn the basis of a number of computer runs for very large a's (see Eq. (5)) (the gradient of the

dielectric constant is proportional to a), and distances up to 5.0 cm from the interface.
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decreasing Re S as z - . But some reflection shows that in fact a constant

Poynting vector must be correct. If Re Sz* - 0 as z - m, and no energy is dis-

sipated in the medium all the reflected energy in the inhomogeneous medium

would eventually have to emerge at the interface with the homogeneous medium,

resulting in a reflection coefficient of 1. This is absurd. And contrary to in-

tuition the energy flux in the positive z-direction stays constant as in a homoge-

neous lossless dielectric medium.t

Results of calculations of Re S* when the medium is lossy, e' (z) / 0 , are

shown in Figure 7 for three different dielectric constant gradients. Curves I

and II of Figure 7 correspond roughly to an Arizona loamy soil with approxi-

mately 15% and 2% moisture by weight at the interface. It is clear from the

figure that the functional dependance of the powerflow on penetration distance

is not the same for all curves. Curve I happens to be very closely exponential,

Curve III roughly follows an exp (-ax2 ) decay.

Losses in the inhomogeneous medium may be calculated directly from the

expression1,

1 0
Loss - EEc dz, (49)

where oc(z) is the conductivity of the medium, which may be expressed in terms

of the dielectric constant c(z) = E"(z) w.22 Using Eq. (10) for Ey, and the ex-

pression for o(z),

Loss: 1 we (0) (1+ az) 1B2 . IH1/3(2) (w)dz. (50)

This integral was machine calculated by Simpson's rule. The calculations show

the normalized L to be exactly equal to (1 - Re Sz*). Additional proof that any

decrease in the Poynting flux Re Sz* in the inhomogeneous medium is solely due

to the conduction (heating) losses and not any scattering reflection losses.

tThis result was anticipated by Wallot, who gave an analytic proof of the constancy of the energy
flux in the transition region between two homogeneous media for a real dielectric constant. See
reference 20.
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VI. CONCLUSIONS

We have shown that the reflection coefficient of a semi infinite inhomogeneous
medium with constant positive gradient dE (z)/dz = e' (0) a - i E" (0) b is not
necessarily a monotonically increasing function for increasing a and b. Machine
calculations of the reflection coefficient I RI, show the coefficient to decrease
with increasing b until a minimum is reached. On the other hand I RI seems to
increase monotonically with a for a given b as far as can be judged from the
available machine calculations.

We demonstrated the presence of scattering reflections in the free space
-. < z < 0, emerging from the inhomogeneous halfspace, in analogy with
Bremmer's results on infinitely and semi infinitely extensive media. But in
addition we drew the important conclusion that these scattering reflections,
which are coherent, interfere to produce the calculated drop in the reflection
coefficient despite increasing gradients of the dielectric constant. As a conse-
quence we find the startling result that a semi infinite inhomogeneous medium
with a steep dielectric constant gradient may have a much smaller reflection
coefficient than the same dielectric half space with zero gradient, i.e. a = b = 0,
and E(z) = e'(0) - i E" (0).
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APPENDIX

We shall consider the reflection of a plane horizontally polarized wave, at
normal incidence, from an inhomogeneous semi infinite medium in the WKB
approximation. The dielectric properties of the inhomogeneous medium are
characterized by the propagation constant k 2 (z) = W2p 0 E (z). (See Eq. (21).)
Then from Eqs. (42) and (44), we have for the progressive wave in the inho-
mogeneous medium,

E = C (k(z)) - 1/ 2 exp - i k(z) dz) (Al)

and in the homogeneous medium as before from Eq. (3),

E = exp (- ik o z) + R exp (+ ik o z). (A2)

From the continuity conditions at z = 0, we find from Eqs. (Al) and (A2),

1 + R = C/(k(0))1/ 2  (A3)

1 + R = C dk(z)/dz C k(O)

iko (k (0)) 3 / 2  (k (0))1/2 ko
z=0O

In the WKB approximation (dk (z)/dz) /k (z) 3 / 2 , 0, then solving Eqs. (A3),
and (A4) for R, we find,

ko - (k (0))
R =  (A5)

ko + (k (0))

Equation (A5) is the reflection coefficient for a homogeneous medium with
dielectric constant E (0). Consequently, in the WKB approximation there are
no scattering reflections in the inhomogeneous medium.
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INHOMOGENEOUS MEDIUM mI
Z, Z < +oo

/'o, (Z)= ' (o) (1 +aZ )+c(Z-Z 1 )]
-i "() [(1 +bZ 1 )+d(Z-Z ),I

Z=Z
1

INHOMOGENEOUS MEDIUM 11
O ZE Z,

.Uo , f(Z)= ' (o) (1 +aZ) -i " (o) (1 +bZ)

K Z=0
H o

HOMOGENEOUS 
MEDIUM I

+oo< Z<0

io' coP

GEOMETRY OF PLANE WAVE INCIDENT FROM
Ey FREE SPACE ON INHOMOGENEOUS MEDIUM

WITH BOUNDARY LAYER

Figure 1. Geometry of a plane wave incident from free space on the x-y face of a
semi infinite inhomogeneous medium. The plane of incidence is the x-z plane and
the wave is polarized in the y-direction. There is an inhomogeneous transition
layer between 0 < z < z and both inhomogeneous media have a dielectric con-
stant which is a linear complex function of z. Free space, the inhomogeneous
layer and the inhomogeneous half space are designated as media I, II, and III
respectively. The angle of incidence, 80, between the wave vector ko and the
normal to the plane is taken to be zero in all cases: The permiability and dielec-
tric constants of free space are respectively /p and EO.
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Figure 2. Absolute amplitude reflection coefficient for a semi infinite inhomogeneous medium
with dielectric constant linearly dependent on z. No boundary layer; horizontal polarization;
angle of incidence, 00; frequency, 19.35 Gc/sec.
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Figure 3. Absolute amplitude reflection coefficient for a semi infinite inhomogeneous medium

with dielectric constant linearly dependent on z. No boundary layer; horizontal polarization;
angle of incidence, 00; frequency, 19.35 Gc/sec.
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Figure 5. Absolute amplitude reflection coefficient for a semi infinite inhomogeneous medium,

with dielectric constant linearly dependent on z, as a function of the parameter a. No boundary

layer; horizontal polarization, angle of incidence, 00; frequency, 19.35 Gc/sec.
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Figure 6. Absolute amplitude reflection coefficient for a two layer inhomogeneous medium as a
function of frequency. Dielectric constant of inhomogeneous media linearly dependent on z.
Horizontal polarization; angle of incidence, 00 .
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1.4

LINEAR VARIATION OF DIELECTRIC CONSTANT WITH DEPTH, e(Z)= c'(Z)-i" (Z)

z1.2
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Figure 7. Power flow in semi infinite inhomogeneous medium with no boundary layer as a func-

tion of the depth of penetration. Frequency, 19.35 Gc/sec, normal incidence.
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